Extending Jira Functionalities with Python Integration

Jira

This is going to be extensive and important for you if you want to extend Jira software functionalities with Python. Jira is a powerful project management tool, but its built-in features can sometimes be limited for advanced use cases. By integrating Python with Jira, you can automate workflows, extract custom reports, and extend Jira’s capabilities. In this guide, we’ll explore how to connect Python to Jira using the jira library and implement custom functionalities.

Table of Contents

Prerequisites.

Step 1: Setting Up Jira API Access.

Step 2: Connecting Python to Jira.

Step 3: Fetching Jira Issues.

Step 4: Creating a New Issue.

Step 5: Updating an Existing Issue.

Step 6: Generating Custom Reports.

Step 7: Automating Workflows with Webhooks.

Setting Up the Webhook in Jira.

Jira Kanban Board KPI Dashboard with Streamlit

Step 1: Connect to Jira.

Step 2: Fetch Issues from Kanban Board.

Step 3: Calculate Time Spent in Each Column.

Step 4: Build the Streamlit Dashboard.

Step 5: Run the Dashboard.

Advanced Jira Kanban Analytics Dashboard with Streamlit

Key Metrics Explained.

How to Use This Dashboard.

Advanced Customizations.

Conclusion.

Prerequisites

Before proceeding, ensure you have:

  1. Jira instance (Cloud or Server) with admin access.
  2. Python 3.6+ installed.
  3. Required libraries:

pip install jira pandas matplotlib

Django

Step 1: Setting Up Jira API Access

To interact with Jira via Python, you need an API token (for Jira Cloud) or username/password (for Jira Server).

For Jira Cloud:

  1. Go to Atlassian Account Settings.
  2. Create an API token.

For Jira Server:

Use your Jira username and password directly.

Step 2: Connecting Python to Jira

Use the jira library to establish a connection.

from jira import JIRA

# Jira Cloud Connection

jira_cloud = JIRA(

    server="https://your-domain.atlassian.net",

    basic_auth=("your-email@example.com", "your-api-token")

)

# Jira Server Connection (if using local Jira)

jira_server = JIRA(

    server="http://your-jira-server.com",

    basic_auth=("username", "password")

)

print("Successfully connected to Jira!")

Step 3: Fetching Jira Issues

Retrieve issues from a specific project or using JQL (Jira Query Language).

# Get all issues from a project

issues = jira_cloud.search_issues('project=PROJECT_KEY')

# Get unresolved bugs with high priority

high_priority_bugs = jira_cloud.search_issues(

    'project=PROJECT_KEY AND type=Bug AND priority=High AND status!=Closed'

)

for issue in high_priority_bugs:

    print(f"Issue: {issue.key} - {issue.fields.summary}")
Jira software

Step 4: Creating a New Issue

Automate issue creation using Python.

new_issue = jira_cloud.create_issue(

    project="PROJECT_KEY",

    summary="Fix authentication bug",

    description="User login fails intermittently",

    issuetype={"name": "Bug"},

    priority={"name": "High"}

)

print(f"Created issue: {new_issue.key}")

Step 5: Updating an Existing Issue

Modify issue fields (status, assignee, labels, etc.).

issue = jira_cloud.issue("PROJECT-123")

# Update summary and assignee

issue.update(

    summary="Updated: Fix login issue",

    assignee={"name": "developer@example.com"}

)

# Transition issue status (e.g., "In Progress" → "Done")

jira_cloud.transition_issue(

    issue,

    transition="Done",

    comment="Issue resolved via Python script"

)

Step 6: Generating Custom Reports

Use pandas and matplotlib to analyze Jira data.

import pandas as pd

import matplotlib.pyplot as plt

# Fetch issues and convert to DataFrame

issues = jira_cloud.search_issues('project=PROJECT_KEY', maxResults=100)

data = []

for issue in issues:

    data.append({

        "Key": issue.key,

        "Summary": issue.fields.summary,

        "Status": issue.fields.status.name,

        "Assignee": getattr(issue.fields.assignee, "displayName", "Unassigned"),

        "Created": issue.fields.created[:10]

    })

df = pd.DataFrame(data)

# Generate a bar chart of issues by status

status_counts = df["Status"].value_counts()

status_counts.plot(kind="bar", title="Issues by Status")

plt.xlabel("Status")

plt.ylabel("Count")

plt.show()
Jira software

Step 7: Automating Workflows with Webhooks

Trigger Python scripts when Jira events occur (e.g., issue created/updated).

Using Flask to Handle Webhooks:

from flask import Flask, request

app = Flask(__name__)

@app.route("/jira-webhook", methods=["POST"])

def handle_webhook():

    data = request.json

    issue_key = data["issue"]["key"]

    print(f"New Jira event detected: {issue_key}")

    # Add custom logic (e.g., send Slack notification)

    return "OK", 200

if __name__ == "__main__":

    app.run(port=5000)

Setting Up the Webhook in Jira

  1. Go to Jira Settings → System → Webhooks.
  2. Add a new webhook pointing to your Flask server (e.g., http://your-server:5000/jira-webhook).

Jira Kanban Board KPI Dashboard with Streamlit

This Streamlit dashboard tracks how long issues have been in each column of a Jira Kanban board, helping teams identify bottlenecks and improve workflow efficiency.

Features

  • Fetches issues from a Jira Kanban board
  • Calculates time spent in each column (status)
  • Displays KPIs in an interactive dashboard
  • Visualizes bottlenecks using bar charts

Prerequisites

  1. Python 3.6+
  2. Required libraries:

pip install streamlit jira pandas matplotlib

Jira software

Step 1: Connect to Jira

First, set up a connection to Jira using the jira library.

from jira import JIRA

import pandas as pd

import streamlit as st

from datetime import datetime

# Initialize Jira connection

def connect_to_jira():

    jira = JIRA(

        server="https://your-domain.atlassian.net",  # Replace with your Jira URL

        basic_auth=("your-email@example.com", "your-api-token")  # Cloud: API Token | Server: Username/Password

    )

    return jira

jira = connect_to_jira()

Step 2: Fetch Issues from Kanban Board

Retrieve issues from a specific project and filter by Kanban columns (statuses).

def fetch_kanban_issues(project_key, kanban_columns):

    issues = jira.search_issues(

        f'project={project_key} AND status in ({", ".join(kanban_columns)})',

        maxResults=1000,

        expand="changelog"

    )

    return issues

Step 3: Calculate Time Spent in Each Column

Extract changelog data to determine how long an issue has been in each status.

def calculate_time_in_columns(issue):

    changelog = issue.changelog

    status_changes = []

    for history in changelog.histories:

        for item in history.items:

            if item.field == "status":

                status_changes.append({

                    "from": item.fromString,

                    "to": item.toString,

                    "time": history.created

                })

    # Sort changes chronologically

    status_changes.sort(key=lambda x: x["time"])

    # Calculate time spent in each status

    time_in_status = {}

    for i in range(len(status_changes)):

        if i + 1 < len(status_changes):

            start_time = datetime.strptime(status_changes[i]["time"], "%Y-%m-%dT%H:%M:%S.%f%z")

            end_time = datetime.strptime(status_changes[i+1]["time"], "%Y-%m-%dT%H:%M:%S.%f%z")

            duration = (end_time - start_time).total_seconds() / 3600  # Convert to hours

            status = status_changes[i]["to"]

            if status in time_in_status:

                time_in_status[status] += duration

            else:

                time_in_status[status] = duration

    # Add current status time (now - last change)

    if status_changes:

        last_status = status_changes[-1]["to"]

        last_change_time = datetime.strptime(status_changes[-1]["time"], "%Y-%m-%dT%H:%M:%S.%f%z")

        current_time = datetime.now(last_change_time.tzinfo)

        current_duration = (current_time - last_change_time).total_seconds() / 3600

        if last_status in time_in_status:

            time_in_status[last_status] += current_duration

        else:

            time_in_status[last_status] = current_duration

    return time_in_status
Best Python IDE

Step 4: Build the Streamlit Dashboard

Display KPIs, charts, and issue details in an interactive dashboard.

def main():

    st.title("Jira Kanban Board KPI Dashboard")

    st.markdown("Track how long issues stay in each Kanban column.")

    # Input fields

    project_key = st.text_input("Jira Project Key", "YOUR_PROJECT_KEY")

    kanban_columns = st.text_input("Kanban Columns (comma-separated)", "To Do, In Progress, Review, Done").split(", ")

    if st.button("Fetch Data"):

        issues = fetch_kanban_issues(project_key, kanban_columns)

        # Process data

        data = []

        for issue in issues:

            time_in_status = calculate_time_in_columns(issue)

            for status, hours in time_in_status.items():

                data.append({

                    "Issue Key": issue.key,

                    "Status": status,

                    "Hours in Status": hours,

                    "Summary": issue.fields.summary

                })

        df = pd.DataFrame(data)

        # Display KPIs

        st.subheader("Key Metrics")

        avg_time_per_status = df.groupby("Status")["Hours in Status"].mean().round(2)

        st.write("Average Time in Each Status (Hours):")

        st.dataframe(avg_time_per_status)

        # Bar chart visualization

        st.subheader("Time Spent in Each Kanban Column")

        st.bar_chart(df.groupby("Status")["Hours in Status"].sum())

        # Raw data table

        st.subheader("Detailed Issue Data")

        st.dataframe(df)

if __name__ == "__main__":

    main()

Step 5: Run the Dashboard

Execute the Streamlit app:

streamlit run jira_kanban_dashboard.py

Expected Output

The dashboard will show:
✅ Average time per status (e.g., “In Progress: 24.5 hours”)
✅ Bar chart of total time spent in each column
✅ Detailed table of issues with time breakdown

Enhancements (Optional)

  • Slack Alerts for bottlenecks (slack_sdk)
  • Automated Reports (PDF/Excel export)
  • Trend Analysis (compare historical data)

This dashboard helps teams:
🔹 Identify bottlenecks (e.g., issues stuck in “Review” too long)
🔹 Improve workflow efficiency by analyzing cycle times
🔹 Make data-driven decisions for process optimization

Advanced Jira Kanban Analytics Dashboard with Streamlit

This enhanced dashboard tracks multiple KPIs including cycle time, lead time, throughput, velocity, and resource workload to provide comprehensive insights into your team’s performance.

Enhanced Features

  • ✅ Lead time (from creation to completion)
  • ✅ Cycle time (from “In Progress” to “Done”)
  • ✅ Throughput (issues completed per time period)
  • ✅ Velocity (story points completed per sprint)
  • ✅ Resource workload (issues assigned per team member)
  • ✅ Interactive date filters for trend analysis

Complete Code Implementation

import streamlit as st

from jira import JIRA

import pandas as pd

import matplotlib.pyplot as plt

from datetime import datetime, timedelta

import numpy as np

# Initialize Jira connection

@st.cache_resource

def connect_to_jira():

    jira = JIRA(

        server="https://your-domain.atlassian.net",

        basic_auth=("your-email@example.com", "your-api-token")

    )

    return jira

jira = connect_to_jira()

# Date range selector

def get_date_range():

    today = datetime.now()

    default_start = today - timedelta(days=30)

    start_date = st.sidebar.date_input("Start date", default_start)

    end_date = st.sidebar.date_input("End date", today)

    return start_date, end_date

# Fetch issues with changelog

@st.cache_data(ttl=3600)

def fetch_issues(project_key, start_date, end_date):

    jql = f'project = {project_key} AND created >= "{start_date}" AND created <= "{end_date}"'

    issues = jira.search_issues(

        jql,

        maxResults=1000,

        expand="changelog,issuetype,assignee"

    )

    return issues

# Calculate all metrics

def calculate_metrics(issues, kanban_columns):

    metrics = []

    sprint_data = {}

    assignee_workload = {}

    for issue in issues:

        # Lead Time (Creation to Resolution)

        created = datetime.strptime(issue.fields.created[:19], "%Y-%m-%dT%H:%M:%S")

        resolved = datetime.strptime(issue.fields.resolutiondate[:19], "%Y-%m-%dT%H:%M:%S") if issue.fields.resolutiondate else None

        lead_time = (resolved - created).total_seconds() / 86400 if resolved else None

        # Cycle Time (First In Progress to Done)

        changelog = issue.changelog

        in_progress_time = None

        done_time = None

        for history in changelog.histories:

            for item in history.items:

                if item.field == "status":

                    change_time = datetime.strptime(history.created[:19], "%Y-%m-%dT%H:%M:%S")

                    if item.toString == "In Progress" and not in_progress_time:

                        in_progress_time = change_time

                    if item.toString == "Done":

                        done_time = change_time

        cycle_time = (done_time - in_progress_time).total_seconds() / 86400 if (in_progress_time and done_time) else None

        # Story Points

        story_points = getattr(issue.fields, 'customfield_10016', 0) or 0

        # Sprint Information

        sprint = getattr(issue.fields, 'customfield_10020', [{}])[0].get('name', 'No Sprint') if hasattr(issue.fields, 'customfield_10020') else 'No Sprint'

        # Assignee Workload

        assignee = getattr(issue.fields.assignee, 'displayName', 'Unassigned')

        if assignee in assignee_workload:

            assignee_workload[assignee] += 1

        else:

            assignee_workload[assignee] = 1

        # Sprint Velocity Tracking

        if sprint != 'No Sprint' and resolved:

            if sprint not in sprint_data:

                sprint_data[sprint] = {'points': 0, 'count': 0}

            sprint_data[sprint]['points'] += story_points

            sprint_data[sprint]['count'] += 1

        metrics.append({

            "Key": issue.key,

            "Type": issue.fields.issuetype.name,

            "Status": issue.fields.status.name,

            "Assignee": assignee,

            "Created": created,

            "Resolved": resolved,

            "Lead Time (days)": lead_time,

            "Cycle Time (days)": cycle_time,

            "Story Points": story_points,

            "Sprint": sprint

        })

    return pd.DataFrame(metrics), sprint_data, assignee_workload

# Main dashboard

def main():

    st.set_page_config(layout="wide")

    st.title("🚀 Advanced Jira Kanban Analytics Dashboard")

    # Sidebar controls

    st.sidebar.header("Filters")

    project_key = st.sidebar.text_input("Project Key", "YOURPROJECT")

    start_date, end_date = get_date_range()

    # Fetch data

    issues = fetch_issues(project_key, start_date, end_date)

    if not issues:

        st.warning("No issues found for the selected criteria")

        return

    kanban_columns = ["To Do", "In Progress", "Review", "Done"]

    df, sprint_data, assignee_workload = calculate_metrics(issues, kanban_columns)

    # Dashboard layout

    col1, col2, col3, col4 = st.columns(4)

    with col1:

        avg_lead_time = df['Lead Time (days)'].mean()

        st.metric("Average Lead Time", f"{avg_lead_time:.1f} days")

    with col2:

        avg_cycle_time = df['Cycle Time (days)'].mean()

        st.metric("Average Cycle Time", f"{avg_cycle_time:.1f} days")

    with col3:

        throughput = len(df[df['Status'] == 'Done'])

        st.metric("Throughput", f"{throughput} issues")

    with col4:

        total_points = df[df['Status'] == 'Done']['Story Points'].sum()

        st.metric("Completed Story Points", total_points)

    # Row 2: Charts

    st.subheader("Performance Trends")

    # Throughput over time

    fig1, ax1 = plt.subplots()

    df_done = df[df['Status'] == 'Done']

    if not df_done.empty:

        throughput_trend = df_done.groupby(df_done['Resolved'].dt.to_period('W')).size()

        throughput_trend.plot(kind='line', ax=ax1, title='Weekly Throughput')

        st.pyplot(fig1)

    # Velocity by sprint

    if sprint_data:

        fig2, ax2 = plt.subplots()

        sprints = list(sprint_data.keys())

        points = [sprint_data[s]['points'] for s in sprints]

        ax2.bar(sprints, points)

        ax2.set_title('Velocity by Sprint (Story Points)')

        ax2.tick_params(axis='x', rotation=45)

        st.pyplot(fig2)

    # Resource workload

    st.subheader("Team Workload Distribution")

    if assignee_workload:

        fig3, ax3 = plt.subplots()

        ax3.bar(assignee_workload.keys(), assignee_workload.values())

        ax3.set_title('Issues Assigned per Team Member')

        ax3.tick_params(axis='x', rotation=45)

        st.pyplot(fig3)

    # Raw data

    st.subheader("Detailed Issue Data")

    st.dataframe(df)

if __name__ == "__main__":

    main()

Key Metrics Explained

  1. Lead Time:
    • Time from ticket creation to resolution
    • Measures overall process efficiency
  2. Cycle Time:
    • Time from “In Progress” to “Done”
    • Focuses on actual work time
  3. Throughput:
    • Number of issues completed in time period
    • Indicates team capacity
  4. Velocity:
    • Story points completed per sprint
    • Helps with sprint planning
  5. Resource Workload:
    • Issues assigned per team member
    • Identifies over/under utilized team members

How to Use This Dashboard

  1. Set your Jira credentials in the connection function
  2. Adjust the project key to match your Jira project
  3. Customize status columns to match your workflow
  4. Filter by date range to analyze specific periods
  5. Monitor trends in the interactive charts

Advanced Customizations

  • Add CFD (Cumulative Flow Diagram) by tracking daily status counts
  • Implement WIP (Work in Progress) limits analysis
  • Add forecasting based on historical velocity
  • Connect to Slack/Teams for automated alerts

This dashboard provides engineering managers and Scrum masters with powerful insights to optimize their team’s performance and identify improvement opportunities in their workflow.

Conclusion

By integrating Python with Jira, you can:
✔ Automate repetitive tasks
✔ Extract and visualize custom reports
✔ Extend Jira’s functionality beyond standard features

The jira Python library provides a seamless way to interact with Jira’s REST API, enabling endless customization possibilities.

Dhakate Rahul

Dhakate Rahul

Leave a Reply